Деление десятичных дробей: правила, примеры, решения

Как научиться делить столбиком

Деление столбиком с остатком и без него нельзя начинать без подготовки. Сначала ребенок должен хорошо уметь и знать следующее:

  • Разряды натуральных чисел (десятки, сотни, тысячи). Находить их в ряду многозначных цифр.
  • Таблица умножения. Этот материал лучше выучить наизусть и постоянно повторять.
  • Отнимать, складывать не только однозначные или двузначные, но и многозначные числа.
  • Решать маленькие задачи на умножение, разность, сумму устно.

Отработайте все обозначенные умения до автоматизма. Затем приступайте к делению маленьких цифр на примере таблицы умножения в уме. Например, ребенок выучил, как умножать цифру 6:

6х2=12

6х3=18

6х4=24 и так далее.

Смело предлагайте такие примеры:

24:6=4

24:4=6

12:2=6

18:3=6

Через пару уроков школьник будет выполнять такие задания легко. Можно разнообразить занятия по устному счету играми на деление.

Игровые задания

Интересные математические игры на деление без остатка помогают детям закрепить навык, узнать законы работы с цифрами, освоить устный счет.

  • Головоломки на развитие внимания. Напишите в тетради 3–5 примеров на деление с ответами.

    Все, кроме одного, должны быть решены неверно. Нужно быстро найти тот пример, который содержит правильный ответ. Затем исправить остальные примеры с помощью устного счета.

  • Подбор примера по результату. Предлагайте малышу ответ без примера. Давайте задание придумать задачу. Например, ответ 8. Ребенок может придумать такую задачу: 48:6.
  • «Идем в магазин». Расставьте на полу игрушки с карточками. На листах написаны примеры: 6:2, 18:3, 42:7, 100:50. Игрушки — это «товар» в фантазийном магазине, частное после решения примера на карточке — их цена. Чтобы узнать стоимость покупки, нужно решить задания, а потом оплатить полученный результат в кассу. Играть лучше в небольшой команде — 2–3 человека.
  • «Молчуны». Ребенок получает карточки с цифрами от 1 до 100. Задавайте вопросы с примерами на деление, ученик должен отвечать без слов, показывая правильный ответ.
  • Небольшие самостоятельные работы с подарком за старательность. Распечатайте карточки с примерами в количестве 5–10 штук. Укажите время на решение, например 5 минут. Поставьте перед ребенком песочные часы. После выполнения контрольной верно поощрите школьника походом в зоопарк, кино, покупкой книги, сладостей. Такой тренажёр хорошо стимулирует детей.
  • «Ищем дерево».

    Нарисуйте небольшой сад с деревьями на картоне. Каждому растению дайте номер, пусть их будет 10. На листочке для ученика напишите 3 примера:

45:9           120:60          14:7

Школьник должен вычислять результат к каждому заданию, а потом складывать все числа между собой. Получится так:

45:9=5

120:60=2

14:7=2

5+2+2=9

Ребенок должен найти дерево под номером 9.

Для игры можно использовать цветные пуговицы и ставить их на занятые деревья. Развлечение подходит для командных соревнований.

После устной работы с делением натуральных чисел можно показать ребенку порядок записи примеров столбиком. Если педагогического опыта у вас нет и вы не знаете, как объяснить ребёнку процесс деления столбиком, то посмотрите видеоурок на эту тему, вспомните теорию сами.

Теперь можно приступать к объяснению сложного материала школьнику. Есть несколько методик домашнего обучения делению:

1. Мама-учитель

Родителям придется ненадолго стать педагогами. Оборудовать доску, купить мел или маркеры. Заранее вспомнить школьный материал по теме “деление уголком”. Объяснить пошагово теорию и закрепить ее на практике с помощью большого количества самостоятельных, карточек, контрольных работ.

Например, это:

Затем нужно обсуждать с малышом материал, закреплять навык на практике несколько недель.

3. Нанять репетитора

Деление (даже трёхзначных чисел на двузначные) не самая сложная тема в школьной программе. В начальных классах можно легко обойтись без платных уроков с педагогом.

Этот вариант оставим на крайний случай.

Общий принцип деления в столбик

Если частное от деления двух чисел является многозначным числом, нахождение его происходит путем деления в столбик. Еще его называют деление уголком.

Решим пример \(\textcolor{red} {295383\div 34}\).

Далее записываем известные
компоненты деления следующим образом:

и начинаем вычисление:

1. Берем первое неполное делимое и пытаемся его разделить на делитель.

Вот тут нам и пригодится способ нахождения однозначного частного. Воспользовавшись им, находим, что в 295 тысячах делитель 34 содержится целиком 8 тысяч раз.

Записываем в частное первую найденную цифру
разряда тысяч, а под неполным делимым пишем результат произведения неполного
частного и делителя. И сразу же находим остаток от этого действия, т.е.
вычитаем из неполного частного результат этого произведения.

В результате умножения первой найденной цифры частного на делитель у нас получилось \(\textcolor{red} {8\cdot 37=272}\). Записываем его под 295 и находим разницу: \(\textcolor{red} {295-272=23}\). Значит, 23 тысячи у нас остаются неразделенными.

В качестве еще одного действия самопроверки нужно сравнить полученную разницу с делителем. Если она меньше делителя, то мы на правильном пути, если же разница равна или больше делителя, то мы или неправильно нашли цифру частного, или допустили ошибку при умножении на делитель либо при нахождении остатка.

2. Оставшиеся неразделенные 23 тысячи представляют собой 230 сотен. Прибавляем к ним те 3 сотни, которые содержатся в делимом (говорят: сносим пять) и получаем второе неполное делимое 233 сотни.

Находим результат деления второго неполного делимого на делитель. 233 сотни разделить на 34 будет 6 сотен. Значит, в разряде сотен частного будет цифра 6. Умножаем ее на делитель 34, получаем 204 и еще 29 сотен неразделенных.

3. 29 неразделенных сотен – это 290 десятков. Добавляем (сносим) к ним 8 десятков делимого, получаем третье неполное делимое 298 десятков.

При делении второго неполного делимого 298 десятков на делитель 34 получается 8 десятков, и еще 26 десятков неразделенных (как и в предыдущих действиях, я умножил 8 на 34 и результат отнял от 298). Поэтому, в частном, в разряде десятков записываем цифру 8.

4. И наконец, 26 десятков – это 260 простых единиц. Добавляем (сносим) к ним 3 единицы делимого и получаем четвертое неполное делимое 263 единицы.

Разделив 263 единицы на 34, получаем 7 полных единиц и 25 неразделенных. Записав в частном последнюю цифру разряда единиц, получаем окончательный ответ действия \(\textcolor{red} {295383\div 34=8687}\) и 25 в остатке.

Рассмотрим еще один пример. \(\textcolor{red} {25326\div 63}\).

Первое неполное делимое будет 253 сотни, количество цифр в частном – 3.

Делим 253 сотни на 63, получается 4 полных сотни и неразделенная 1 сотня в остатке.

1 сотня = 10 десятков, добавляем (сносим) 2 десятка из делимого, получаем второе неполное делимое 12 десятков.

Но 12 не делится нацело на 63 части, то есть, нет ни одного целого десятка в каждой части. Значит, мы в частном в разряде десятков должны записать , поскольку все 12 десятков оказались неразделенными. А к этим 12 десяткам (т.е. 120 сотням) добавить (снести) 6 единиц делимого.

Итак, запомните, что
каждое неполное делимое образует в частном одну цифру соответствующего разряда
и что даже если неполное делимое меньше делителя, то в частном все равно нужно
записать нулевой результат этого действия.

126 единиц делим на 63, получается 2 единицы без остатка. Теперь мы можем записать окончательный ответ деления \(\textcolor{red} {25326\div 63=402}\).

Итак, в общем виде алгоритм деления в столбик выглядит так:1. Находим первое неполное делимое и количество цифр в частном.2. Делим неполное делимое на делитель. Цифру, полученную в результате деления записываем ниже черты под делителем.3. Умножаем полученную цифру на делитель, результат записываем под неполным делимым.4. Ставим между ними знак минус и выполняем действие.5. К полученной разнице сносим цифру следующего разряда (если она есть) и получаем второе неполное делимое.6. Выполняем пункты 2-5 до тех пор, пока в делимом не останется ни одной неснесенной цифры.7. Если неполное делимое невозможно разделить на делитель, то в частном ставится и к этому неполному делимому сносится следующая цифра.

Как научиться делить столбиком 3 класс

Арифметические расчеты в 3 классе базируются на таблице умножения от 1 до 10 в пределах чисел до 100. На этом этапе ребенок должен понимать сам процесс деления и безошибочно определять категории «делителя», «делимого» и «частного». Конечно, деление многозначных чисел проще всего проводить столбиком. Школьник меньше путается и не теряет цифры. Таким образом, вырабатывается мысленная логическая схема. Суть метода нельзя уловить без знания таблицы умножения и способа «обратного» деления.

Алгоритм деления в столбик:

Например, 98 необходимо разделить в столбик на 7.

В нашем примере 98 – делимое, 7 – делитель, результат деления, который получится в итоге – частное. Его и необходимо найти.

Делимое и делитель запишем рядом, разделив их вертикальной линией с уголком. Теперь необходимо определить, сколько семерок поместится в девятке – одна. Цифру «1» запишем под линией в правом нижнем углу.

Под девяткой запишем семерку, подчеркнем линией, отнимем и запишем разницу — 2. Если в двойке не помещается ни одной семерки, значит решение верно. Снесем к двойке верхнюю восьмерку. Получим — 28. Проанализируем, сколько семерок может поместиться в цифре «28» – 4. Полученный ответ запишем рядом с «1».

От 28 отнимем цифру «28» и получим «0» — значит, деление произвели правильно. Если в итоге деления не получается ноль, возможна в подсчетах арифметическая ошибка или деление без остатка невозможно. В итоге частное получилось «14».

Правильность деление можно проверить, если при умножении 14 на 7 получается 98 — подсчеты верны.

Главная проблема, с которой сталкиваются третьеклассники на уроках математики – это отсутствие умения производить быстрые арифметические действия. А ведь вся школьная программа начальной школы базируется на этой основе, особенно действия на деление.

Как поделить десятичную дробь на натуральное число: правило, примеры

Примеры с дробями на деление на натуральное число

Теперь давайте посмотрим, как поделить десятичную дробь на натуральное число. Вот правило и объяснение действий:

  • Решение производится по правилам «стандартного» деления в столбик. На запятую поначалу можно не обращать внимания.  Однако забывать о ней нельзя.
  • Запятая ставится в частном на том этапе, когда процесс деления целой части делимого полностью завершен.
  • Если целая часть делимого в результате осмотра оказывается несколько меньше, чем присутствующий делитель, то в частном стоит поставить «0 целых».

Это определение хорошо видно на примерах:

Примеры с дробями на деление
Примеры с дробями на деление

Многие думают, что деление столбиком выручает только в математических операциях с установленными натуральными числами. На самом деле, в случае с дробями этот простой способ также применим. Чтобы поделить десятичные дроби на натуральные числа столбиком, нужно:

  • Прибавить к десятичной дроби нули.
  • Разделить десятичную дробь на натуральное число (столбиком). Когда процесс завершится, поставьте в частном запятую и продолжить расчеты.
  • Результатом непременно окажется дробь (конечная, либо бесконечная), в зависимости от текущего остатка. Конечным результат будет в случае с нулями. А если остатки будут повторяться, то мы получим уже дробь периодическую.

Примеры с дробями на деление
Примеры с дробями на деление

Как видите, остатки повторяются, в частном также цифры чередуются. Поэтому стоит записать ответ: 6,(925).

Алгоритм деления столбиком

1. Запишем числа вместе с символом деления столбиком. Теперь смотрим на первую слева цифру в записи делимого. Возможны два случая: число, определяемое этой цифрой, больше, чем делитель, и наоборот. В первом случае мы работаем с этим числом, во втором — дополнительно берем следующую цифру в записи делимого и работаем с соответствующим двузначным числом. Согласно с этим пунктом, выделим в записе примера число, с которым будем работать первоначально. Это число — 14, так как первая цифра делимого 1 меньше, чем делитель 4.

2. Определяем, сколько раз числитель содержится полученном числе. Обозначим это число как x=14 . Последовательно умножаем делитель 4 на каждый член ряда натуральных чисел ℕ, включая нуль : , 1, 2, 3 и так далее. Делаем это, пока не получим в результате x или число, большее чем x. Когда в результате умножения получается число 14, записываем его под выделенным числом по правилам записи вычитания в столбик. Множитель, на который умножался делитель, записываем под делителем. Если в результате умножения получается число, большее чем x, то под выделенным числом записываем число, полученное на предпоследнем шаге, а на место неполного частного (под делителем) пишем множитель, на который на предпоследнем шаге проводилось умножение.

В соответствии с алгоритмом имеем:

4·=<14; 4·1=4<14; 4·2=8<14; 4·3=12<14; 4·4=16>14.

Под выделенным числом записываем число 12, полученное на предпоследнем шаге. На место частного записываем множитель 3.

3. Столбиком вычитаем  из 14 12 , результат записываем под горизонтальной чертой. По аналогии с первым пунктом сравниваем полученное число с делителем. 

4. Число 2 меньше числа 4, поэтому записываем под горизонтальной чертой после двойки цифру,расположенную в следующем разряде делимого. Если же в делимом более нет цифр, то на этом операция деления заканчивается. В нашем примере после полученного в предыдущем пункте числа 2 записываем следующую цифру делимого — . В итоге отмечаем новое рабочее число — 20.

Важно!

Пункты 2-4 повторяются циклически до окончания операции деления натуральных чисел столбиком.

2. Снова посчитаем, сколько делителей содержится в числе 20. Умножая 4 на , 1, 2, 3..  получаем:

4·5=20

Так как мы получили в результе число, равное 20 , записываем его под отмеченным числом, а на месте частного, в следубщем разряде, записываем 5 — множитель, на который проводилось умножение. 

3. Проводим вычитание столбиком. Так как числа равны, получаем в результате число ноль: 20-20=.

4. Мы не будем записывать число ноль, так как данный этап — еще не окончание деления. Просто запомним место, куда мы могли его записать и запишем рядом число из следующего разряда делимого. В нашем случае — число 2.

Принимаем это число за рабочее и снова выполняем пункты  алгоритма.

2. Умножаем делитель на , 1, 2, 3.. и сравниваем результат с отмеченным числом.

4·=<2; 4·1=4>2

Соответственно, под отмеченным числом записываем число , и под делителем в следующий разряд частного также записываем .

3. Выполняем операцию вычитания  и под чертой записываем результат.

4. Справа под чертой добавляем цифру 8, так как это следующая цифра делимого числа.

Таким образом, получаем новое работчее число — 28. Снова повторяем пункты алгоритма.

Проделав все по правилам, получаем результат:

Переносим под черту вниз последнюю цифру делимого — 8. В последний раз повторяем пункты алгоритма 2-4 и получаем:

В самой нижней строчке записываем число . Это число записывается только на последнем этапе деления, когда операция завершена.

Таким образом, результатом деления числа 140228 на 4 является число 35072. Данный пример разобран очень подробно, и при решении практических заданий расписывать все действия столь досканально не нужно.

Нужна помощь преподавателя?
Опиши задание — и наши эксперты тебе помогут!

Описать задание

Приведем другие примеры деления чисел в столбик и примеры записи решений.

Пример 1. Деление натуральных чисел в столбик

Разделим натуральное число 7136 на натуральное число 9.

Запишем:

После второго, третьего и четвертого шага алгоритма запись примет вид:

Повторим цикл:

Последний проход, и поучаем результат:

Ответ: Неполное неполное частное чисел 7136 и 9 равно 792, а остаток равен 8.

При решении практических примеров в иделе вообще не использовать пояснения в виде словесных комментариев.

Пример 2. Деление натуральных чисел в столбик

Разделим число 7042035 на 7.

Ответ: 1006005

Скачать карточки

В качестве домашнего математического тренажера используйте карточки с примерами. В них включайте разные случаи: с однозначными и многозначными числами, с нулями, деление с полным результатом и остатком. Скачать карточки можно бесплатно. Раздаточный материал обязательно следует напечатать для проверочной работы.

Ошибки с делением у детей в начальной школе встречаются довольно часто. Уделите этой теме максимум внимания и времени, чтобы усвоение последующего материала проходило без запинок. Используйте карточки, видеоуроки, постоянную тренировку навыка и повторение пройденных тем и правил в игровой форме. Тогда домашние уроки не навеют на ребенку скуку и пройдут с максимальной пользой.

Понравился наш контент? Подпишитесь на канал в .

Как объяснить ребенку деление и научить делить столбиком?

дети-школьники тренируются делить числа столбиком

Во-первых, учтите ряд вводных факторов:

  • ребёнок знает таблицу умножения
  • хорошо разбирается и умеет применять на практике действия вычитания и сложения
  • понимает разницу между целым и его составными элементами

Дальше акценты в ваших действиях выглядят так:

  • поиграйте с таблицей умножения. Положите её перед ребёнком и на примерах покажите удобство использования при делении,
  • объясните расположение делимого, делителя, частного, остатка. Предложите ребёнку повторить эти категории,
  • превратите процесс в игру, придумайте историю про цифры и действие деления,
  • подготовьте наглядные предметы для обучения. Подойдут счётные палочки, яблоки, монеты, игрушки, очищенные сведение или апельсин. Предлагайте их распределить между разным количеством людей, например, между мамой, папой и ребенком,
  • первым показывайте ребёнку действия с чётными числами, чтобы он видел результат деления, кратный двум.

Сам процесс освоения деления столбиком:

  • запишите цифры, разделив их границами. Повторите с ребёнком расположение категорий деления,
  • предложите ему проанализировать цифры делимого на предмет «больше-меньше» делителя. Помогайте вопросом — сколько раз одно число помещается во втором. В результате ребёнку следует выделить то число/числа, которые он будет применять для совершения первого действия,
  • подскажите алгоритм определения разрядности частного. Её удобно изобразить точками, которые потом превратятся в цифры,
  • помогите правильно определить и записать первое число в частное, совершите его умножение на делитель, запишите результат под делимым, выполните вычитание. Объясните, что результат вычитания всегда должен быть меньше делителя. В противном случае действие совершилось с ошибкой и его следует переделать,
  • следующий шаг — анализ ситуации с добавлением второго числа от делимого и определения количества раз повторения делителя в нём,
  • снова помогите с записью действия,
  • продолжайте до момента, когда результат от разницы составит ноль. Это актуально только для деления чисел без остатка,
  • закрепите знания у ребёнка еще несколькими примерами. Следите, чтобы он не устал, иначе дайте перерыв.

Сначала стоит доходчиво объяснить, что такое деление на простом примере. Суть математического действия — разложить число поровну. В 3-м классе дети хорошо учатся на доступных примерах: раздают кусочки торта гостям, рассаживают кукол по 2 машинам.

Когда малыш усвоит суть деления, покажите его запись на листке. Используйте уже знакомые задания с простыми числами:

  • Сначала запишите задачу обычным способом: 250:2=?
  • Каждому числу дайте название: 250 — делимое, 2 — делитель, результат после знака равно — частное.
  • Затем сделайте сокращенную запись столбиком (уголком):
  • Рассуждайте вместе так: сначала найдем неполное частное. Это будет 2, так как оно не меньше делителя, а вернее, равно ему. В этом числе помещается один делитель, значит, в частное записываем цифру 1 и умножаем ее на 2. Заносим полученный результат под делимым. Отнимаем 2-2. Получится ноль, поэтому сносим следующее число и опять подыскиваем частное. Совершаем математическое действие до тех пор, пока не получится ноль.
  • После получения окончательного результат сделайте проверку с помощью умножения: 125х2=250.

Желательно научить третьеклассника рассуждать в процессе вычисления вслух, выполнять действия на черновике. Сначала проговаривайте алгоритм вместе, потом только слушайте ученика и помогайте исправить ошибки.

Итак, как объяснить ребенку деление столбиком:

  • Постарайтесь сначала объяснить на маленьких цифрах. Возьмите счетные палочки, например, 8 штук
  • Спросите у ребенка, сколько пар в этом ряду палочек? Правильно — 4. Значит, если разделить 8 на 2, получится 4, а при делении 8 на 4 получится 2
  • Пусть ребенок сам разделит другое число, например, более сложное: 24:4
  • Когда малыш освоил деление простых чисел, тогда можно переходить к делению трехзначных чисел на однозначные

Деление с остатком и без

Иметь дело мы будем с целыми числами, а вот в результате может получиться и десятичная дробь, в зависимости от того, допустимо ли в задании частное с остатком. Для начала попробуем разделить трехзначное число на однозначное.

Пример 1

Возьмем 216 разделить 3. Попробуем записать пример:

Посмотрим, какая из первых цифр делится нацело на 3. Двойка? Нет. Значит, берем две цифры — 21. Получится 7, а промежуточное действие будет выглядеть так:
Теперь остается разделить на 3 последнюю цифру — 6, потому после первого шага остаток не образовался. Шестерку в столбике надо написать строго под той, что стоит в примере — в этом главный фокус, иначе можно очень легко сбиться. Что ж, давайте запишем аккуратно. Например, вот так:

Пример 2

Но может быть и другая ситуация. Например, когда первые две цифры на однозначное число нацело не делятся. Ничего страшного. Записываем:

Первым делом придется делить 76, никуда не денешься. Ближайшее число, кратное 8 (то есть то, которое делится без остатка), — 72. Его и будем отнимать. Получим 9, которое сразу запишем в частное, и 4 в остатке — его нужно поместить под чертой:

Простые и составные числа

Числовые значения в математике делятся на простые и составные. Ошибка многих новичков при решении задач состоит в том, что многие из них не знают о наличии специальных таблиц. Для «распознания» простого числа существуют два способа:

  1. Ручной.
  2. Табличный.

Первым методом рекомендуется пользоваться, когда нет возможности определить простое число при помощи таблицы или вычислительной машины (компьютера). Для этих целей существует специальный алгоритм, который состоит из набора шагов на нахождение делителя. Он имеет следующий вид:

  1. Произвести перебор всех множителей.
  2. Записать результат или убедиться, что число является простым.

Он является простым, но для понимания его математического смысла следует разобрать определенный пример для числа 5678913. Решение задания нужно осуществлять по следующей схеме:

  • 1: делится, то есть 5678913 / 1 = 5678913.
  • 2: не является четным. Следовательно, этого делителя не существует.
  • 3: 5 + 6 + 7 + 8 + 9 + 1 + 3 = 39 = 3 + 9 = 12 (делится).
  • 4: множитель отсутствует, поскольку 13 не делится на 4.
  • 5: число не заканчивается на 0 или 5 (не делится).
  • 6: сумма цифр равная 12, и делится на 2 и 3 (делится).
  • 7: 5|678|913 = 6 + 7 + 8 + 9 + 1 + 3 = 34 (нет делителя).
  • 8: 913 не делится на 8, 4 и 2.
  • 9: не делится, поскольку сумма цифр эквивалентна 12.

Когда нужно доказать, что число является простым, тогда можно завершить упражнение на третьем шаге. Для этого необходимо минимальное количество операций, поскольку дальше их выполнять не имеет смысла. Если суть решения заключается в нахождении делителей, то его можно продолжать до 9 пункта включительно.

Как объяснить ребенку деление?

На самом деле, делить ребенок начинает еще в самом маленьком возрасте. Просто он еще до конца не осознает, что он участвует в данном процессе. Вы должны изначально объяснить ребенку, что такое целое, больше, меньше и т.д.,  он должен начать понимать каких игрушек больше, а каких меньше.

1. Поиграйте с малышом в деление

Для этого возьмите, к примеру, конфеты и попросите его поделиться с вами поровну. Изначально конечно ребенок будет действовать самым простым способом, он будет перекладывать конфетки по одной. В этом нет ничего страшного ведь малыш еще совсем маленький. После того как ребенок закончит делить конфеты помогите ему сосчитать сколько всего изначально их было.

Вы можете предложить малышу взять яблоки и угостить каждого члена семьи. Так же необходимо пояснить своему чаду, что не всегда, получается, разделить предметы поровну. Приведите ему пример, что у вас есть пять подушек и вам необходимо поделить их между двумя людьми поровну. Такое попросту не возможно, потому что кому-то достанется три подушки, а кому-то две.

2. Как объяснить ребенку деление Вам подскажут обычные примеры

Объясните ребенку, что первое число это и есть те самые конфеты, а вот второе это вы и он (или еще больше участников)

И главное скажите ему, что абсолютно неважно, какие именно предметы он будет делить, самое главное узнать, сколько предметов в итоге окажется у каждого из участников

Из всего вышесказанного можно сделать вывод о том, что для того чтобы ребенок как можно быстрее понял как делить предметы, ему нужно все наглядно демонстрировать. Приводите ему как можно больше примеров, рисуйте с ним, берите какие-либо предметы и делите их. Если вы будете следовать всем перечисленным рекомендациям, то будьте уверены, ваш ребенок очень скоро сможет без труда делить числа.

Дети школьного возраста

Процесс деления можно представить, например, так: если 10 монет раздать 2 людям, то каждый получит по 5 монет. Или так: 10 монет, разложенных в стопки по 2 монеты, дадут 5 стопок.

Как выполняется деление?

Деление одного числа (делимого) на другое (делитель) показывает, сколько делителей содержится в делимом. Например, при делении 4 на 2 мы находим, сколько чисел 2 содержится в числе 4. Результат деления называется частным.

Как деление связано с умножением?

Деление — это операция, обратная умножению. Если вы знаете результат деления, то можете записать соответствующее произведение, и наоборот.

Возврат к исходному значению

Если 10 (делимое) поделить на 2 (делитель), то получится 5 (частное). Умножая частное (5) на делитель (2), мы получаем значение исходногоделимого (10).

Другой подход к делению

Деление также показывает, сколько раз в делимом встречаются группы, равные делителю. Ответом будет то же самое частное.В этом примере 30 футбольных мячей делятся на группы по 3 мяча.

Получилось ровно 10 групп по 3 мяча (без остатка), поэтому 30 : 3 = 10.

Деление на числа, заканчивающиеся нулями

Как и в случае с
умножением, деление чисел облегчается, если делитель заканчивается одним или
несколькими нулями. Рассмотрим два возможных случая:

  • частный – когда делитель является единицей с нулями
  • общий – когда делитель любое число, оканчивающееся нулями.

Рассмотрим первый случай.

Деление на единицу с любым количеством
нулей

Единица с любым количеством нулей – это не что иное как единица соответствующего разряда. Например, 10 – это 1 единица разряда десятков, 1000 – это одна единица разряда тысяч, 10000000 – 1 единица разряда десятков миллионов и т.д.

Следовательно, разделить число, к примеру, на 10, 1000, 10000000 и т.д. – это значит определить, сколько в нем содержится десятков, тысяч, десятков миллионов. А как узнать, сколько в каком-либо числе содержится единиц любого разряда я уже рассказывал в уроке разряды и классы. Для завершения действия деления нужно лишь записать в остаток число, которое получается из отбрасываемых нами цифр.

Например:

\(\textcolor{red} {75427916\div 10=7542791}\) (остаток 6); \(\textcolor{red} {75427916\div 1000=75427}\) (остаток 916); \(\textcolor{red} {75427916\div 10000000=7}\) (остаток 5427916).

Запишите:Чтобы разделить какое-нибудь число на единицу с любым количеством нулей, нужно отсчитать в делимом справа столько цифр, сколько нулей содержится в делителе; тогда все цифры, находящиеся слева от разделения, составят частное, а те, что справа – будут остатком.

Деление на число, оканчивающееся нулями

Рассмотрим на примере \(\textcolor{red} {284556\div 2800}\).

Делитель здесь не что иное как 28 сотен. Логично предположить, что эти 28 сотен могут хотя бы один раз содержаться только в сотнях делимого. Значит, нам нужно определить, сколько в делимом всего единиц разряда сотен, и разделить их на 28 единиц разряда сотен делимого. А отброшенные цифры десятков и простых единиц добавятся к остатку.

В числе 284556 всего 2845 сотен да еще 56 единиц. Разделим 2845 сотен на 28 сотен, получим частное 101 и 17 сотен неразделенными. Прибавив к неразделенным 17 сотням 56 единиц из делимого, получим 1756. В этом числе делитель 2800 не помещается ни один раз, значит, 1756 – это остаток: \(\textcolor{red} {284556\div 2800=101}\) (остаток 1756).

Запишите:Чтобы разделить какое-нибудь число на число, заканчивающееся нулями, нужно отбросить мысленно нули в делителе, в делимом тоже отбросить мысленно такое же количество цифр, как и нулей в делителе. Получившееся число в делимом разделить на получившееся число в делителе, а к остатку прибавить (снести) те цифры делимого, которые отбросили ранее.

Деление в столбик двузначных, трехзначных, многозначных чисел, чисел с нулями

Не нужно пугаться сразу, что процесс деления не простой, поэтому вы не освоите его. Освоите! В математике следует соблюдать четкие правила, тогда у вас все получится. Алгоритм деления лучше учить на конкретных примерах, ниже будет представлено множество примеров.

Пример деления на трехзначный делитель

Все они выполняются по схеме:

  1. Вначале записывается делимое, рядом ставится значок разделить: Ι—, и над чертой пишется делитель (число, на которое делят делимое).
  2. Потом необходимо выделить часть делимого для осуществления деления, если это необходимо в данном случае.
  3. Далее придется выполнять умножение для того, чтобы определить, сколько раз взять делитель, чтобы получилась выделенная часть делимого. Причем число не должно быть больше 9-ти.
  4. Выполняете умножение делителя, записываете результат под делимым, а число ≤ 9-ти записываете под черту знака: Ι– разделить.
  5. Из выбранной части делимого вычитаете результат, записываете его под подчеркиванием, сносите следующую цифру делимого, повторяйте опять процесс умножения, пока не разделите число на число.

Рассмотрим деление в столбик на простом примере:

Если такие двухзначные числа, как 16, 28 можно разделить в уме на 2 или 4 (в первом случае при делении на 2 получится 8 и 14), а во втором (4 и 7), то 51 разделить на 3 без столбика уже сложнее. Как происходит деление в столбик распишем на примере 51 разделить на 3.

Деление в столбик

  • Как записывается делимое, делитель уже было сказано, визуально можно посмотреть выше на изображении. Делимое идет первым, потом ставится значок деления и над чертой пишут делитель.
  • Теперь определяемся, сколько выделить цифр, чтобы начать подбирать множитель, который записывается под чертой в выделенный квадратик на изображении.
  • Выделяем одну цифру 5-ку, она больше 3-ки, на черновике распишите примерно какой подобрать множитель, для того чтобы получить число ≤ 5, наглядно это выглядит так: 5 ≥ 3 · 1, число 1 и есть множитель. Его пишут под чертой делить в квадратике.
  • Далее под пятеркой пишем произведение 3 · 1 = 3.
  • Теперь вычитаем из 5 — 3 = 2. Разница, в нашем случае 2 должна быть < делителя, в нашем случае 3.
  • Итак, остается разделить 21 на 3. Из таблицы умножения вы знаете, что: 21 : 3 = 7.
  • Семерку пишут под чертой значка делить после единицы. Ответ получается 17.

Далее рассмотрим пример деления трехзначных чисел:

Давайте разделим трехзначное число 512 на 16. Деление будет происходить по той же схеме, что и двухзначного числа.

Пример деления трехзначного числа

  • Запишите делимое, делитель, как на фото выше.
  • Далее выделим число 51, и узнайте, сколько раз нужно взять число 16, чтобы получилось произведение меньше или равно 51. Итак, выше представлены расчеты: 16 · 3 = 48 < 51.
  • Значит под чертой напишите 3, а под делимым 48. Теперь из 51 вычтите 48, получится 3, сносим следующую цифру 2.
  • Подберите множитель к 16, чтобы произведение получилось равное или меньше 32. Итого: 16 · 2 = 32.
  • Двойку запишите под черту знака деления, а результат 32 под делимым. Итого 32 — 32 = 0.
  • Результат 32.

Рассмотрим деление многозначного числа:

Давайте найдем частное 998190 на 135, пример представлен на изображении ниже. Чтобы решить его, следует подставить нужные числа в пустых клетках.

Пример деления в столбик

  • Итак, нужно найти первую цифру, на которое нужно умножить число 135, чтобы получить результат ≤ 998. Для этого понадобится знать отлично таблицу умножения и умение складывать цифры. 135 · 7 = 945.
  • Число 945 пишите под делимым, вычтите из 998 — 945 = 53. Это число меньше 135, потому нужно снести еще одну цифру 1, получится 531.
  • Высчитываем, какой множитель подойдет, к 135, чтобы получить число меньше, чем 534. Решение: 135 · 3 = 405.
  • Вторая цифра под чертой знака деления 3, из 531 — 405 = 126.
  • Сносим 9, выходит 1269, подбираем множитель к 135. Результат 135 · 9 = 1215.
  • Третья цифра под чертой 9. Теперь: 1269 — 1215 = 54.
  • Сносим 0, выходит 540, а 540 = 135 · 4, итого последняя цифра результата это 4.
  • Результат 7394.

Деление чисел с нулями:

Вывод

К каждому ребенку нужен свой подход — не существует единой методики, которая подойдет любому ученику. Кому-то проще оперировать цифрами, а примеры с яблоками или конфетами вызывают недоумение. Другие школьники по привычке считают на пальцах или на линейке — для них в качестве примера отлично подойдут задачи с покупками. Как объяснить ребенку деление? Начать с азов, пробовать разные методики, а если не удается достичь желаемого результата, довериться специалистам, обратиться к учителю или записаться на специализированные курсы, которые будут актуальны для детей в возрасте от 5 до 12 лет (подготовку к школе стоит начинать заблаговременно).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector