Сложение и вычитание трехзначных чисел

Деление в столбик двузначных, трехзначных, многозначных чисел, чисел с нулями

Не нужно пугаться сразу, что процесс деления не простой, поэтому вы не освоите его. Освоите! В математике следует соблюдать четкие правила, тогда у вас все получится. Алгоритм деления лучше учить на конкретных примерах, ниже будет представлено множество примеров.

Пример деления на трехзначный делитель

Все они выполняются по схеме:

  1. Вначале записывается делимое, рядом ставится значок разделить: Ι—, и над чертой пишется делитель (число, на которое делят делимое).
  2. Потом необходимо выделить часть делимого для осуществления деления, если это необходимо в данном случае.
  3. Далее придется выполнять умножение для того, чтобы определить, сколько раз взять делитель, чтобы получилась выделенная часть делимого. Причем число не должно быть больше 9-ти.
  4. Выполняете умножение делителя, записываете результат под делимым, а число ≤ 9-ти записываете под черту знака: Ι– разделить.
  5. Из выбранной части делимого вычитаете результат, записываете его под подчеркиванием, сносите следующую цифру делимого, повторяйте опять процесс умножения, пока не разделите число на число.

Рассмотрим деление в столбик на простом примере:

Если такие двухзначные числа, как 16, 28 можно разделить в уме на 2 или 4 (в первом случае при делении на 2 получится 8 и 14), а во втором (4 и 7), то 51 разделить на 3 без столбика уже сложнее. Как происходит деление в столбик распишем на примере 51 разделить на 3.

Деление в столбик

  • Как записывается делимое, делитель уже было сказано, визуально можно посмотреть выше на изображении. Делимое идет первым, потом ставится значок деления и над чертой пишут делитель.
  • Теперь определяемся, сколько выделить цифр, чтобы начать подбирать множитель, который записывается под чертой в выделенный квадратик на изображении.
  • Выделяем одну цифру 5-ку, она больше 3-ки, на черновике распишите примерно какой подобрать множитель, для того чтобы получить число ≤ 5, наглядно это выглядит так: 5 ≥ 3 · 1, число 1 и есть множитель. Его пишут под чертой делить в квадратике.
  • Далее под пятеркой пишем произведение 3 · 1 = 3.
  • Теперь вычитаем из 5 — 3 = 2. Разница, в нашем случае 2 должна быть < делителя, в нашем случае 3.
  • Итак, остается разделить 21 на 3. Из таблицы умножения вы знаете, что: 21 : 3 = 7.
  • Семерку пишут под чертой значка делить после единицы. Ответ получается 17.

Далее рассмотрим пример деления трехзначных чисел:

Давайте разделим трехзначное число 512 на 16. Деление будет происходить по той же схеме, что и двухзначного числа.

Пример деления трехзначного числа

  • Запишите делимое, делитель, как на фото выше.
  • Далее выделим число 51, и узнайте, сколько раз нужно взять число 16, чтобы получилось произведение меньше или равно 51. Итак, выше представлены расчеты: 16 · 3 = 48 < 51.
  • Значит под чертой напишите 3, а под делимым 48. Теперь из 51 вычтите 48, получится 3, сносим следующую цифру 2.
  • Подберите множитель к 16, чтобы произведение получилось равное или меньше 32. Итого: 16 · 2 = 32.
  • Двойку запишите под черту знака деления, а результат 32 под делимым. Итого 32 — 32 = 0.
  • Результат 32.

Рассмотрим деление многозначного числа:

Давайте найдем частное 998190 на 135, пример представлен на изображении ниже. Чтобы решить его, следует подставить нужные числа в пустых клетках.

Пример деления в столбик

  • Итак, нужно найти первую цифру, на которое нужно умножить число 135, чтобы получить результат ≤ 998. Для этого понадобится знать отлично таблицу умножения и умение складывать цифры. 135 · 7 = 945.
  • Число 945 пишите под делимым, вычтите из 998 — 945 = 53. Это число меньше 135, потому нужно снести еще одну цифру 1, получится 531.
  • Высчитываем, какой множитель подойдет, к 135, чтобы получить число меньше, чем 534. Решение: 135 · 3 = 405.
  • Вторая цифра под чертой знака деления 3, из 531 — 405 = 126.
  • Сносим 9, выходит 1269, подбираем множитель к 135. Результат 135 · 9 = 1215.
  • Третья цифра под чертой 9. Теперь: 1269 — 1215 = 54.
  • Сносим 0, выходит 540, а 540 = 135 · 4, итого последняя цифра результата это 4.
  • Результат 7394.

Деление чисел с нулями:

Примеры вычитания в столбик

Пример 1

Отнимем 25 из числа 68.

Пример 2

Вычислим разность чисел: 35 и 17.

Пояснение:

Так как из цифры 5 нельзя отнять 7, мы занимаем один десяток у старшего разряда. Получается 5+10=15, а 15-7=8. И не забываем вычесть занятый десяток из соответствующего разряда, т.е. 3-1=2-1=1.

Пример 3

Вычтем число 46 из 70.

Пояснение:

Т.к. из нуля нельзя вычесть 6, занимаем один десяток. Следовательно, 0+10=10, а 10-6=4. Затем учитываем занятый десяток по выполнении вычитания в следующем разряде, т.е. 7-4-1=2.

Пример 4

Найдем разность двузначного и трехзначного чисел: 182 и 96.

Пояснение:

Из цифры 2 вычесть 6 не получится, значит занимаем один десяток. Получаем 2+10=12, 12-6=6. В десятках остается 8-1=7, но из 7 тоже нельзя отнять 9, значит занимаем десяток у сотен: 7+10=17, 17-9=8. Таким образом, в самих сотнях ничего не остается, т.к. 1-1=0.

Пример 5

Отнимем из 1465 числа 357, 214 и 78.

Пояснение:

В данном случае выполняем те же самые действия, что и в предыдущих примерах. Разница лишь в том, что при вычитании в столбце с единицами требуется занять не один, а два сразу десятка, т.е. 5+20=25, 25-7-4-8=6. В разряде десяток при этом останется 4 (6-2).

Правила вычитания в столбик

Чтобы найти разность двух и более чисел с любым количеством разрядов можно выполнить вычитание в столбик. Для этого:

  1. Записываем уменьшаемое в самой верхней строчке.
  2. Под ним записываем первое вычитаемое – таким образом, чтобы одинаковые разряды обоих чисел находились друг под другом (десятки под десятками, сотни под сотнями и т.д.)
  3. Таким же способом дописываем другие вычитаемые, если они есть. В результате образуются столбцы с разными разрядами.
  4. Под записанными числами чертим горизонтальную линию, которая будет отделять уменьшаемое и вычитаемые от разности.
  5. Переходим к вычитанию цифр. Эта процедура выполняется справа налево, отдельно для каждого столбца, а результат пишем под чертой в том же самом столбце. Здесь есть пара нюансов:
    • Если из цифры в уменьшаемом нельзя отнять цифры в вычитаемых, значит занимаем десяток у более старшего разряда, и затем обязательно учитываем это в дальнейших действиях (см. Пример 2).
    • Если в уменьшаемом стоит ноль, это автоматически означает, что для выполнения вычитания нужно занять у следующего разряда (см. Пример 3).
    • Иногда в результате “займа” в более старшем разряде может не остаться цифр (см. Пример 4).
    • В редких случаях, когда вычитаемых много, требуется занять не один, а сразу два и более десятка (см. Пример 5).
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector